Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Health Econ ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502710

RESUMO

By exploiting the development of special economic zones (SEZs) in China as a quasi-natural experiment, this paper evaluates how such zones affect infant mortality. Difference-in-differences analysis reveals that SEZs significantly decrease the local infant mortality rate, and the impact is larger for male infants and infants with less-educated mothers. Further studies show that the SEZs, which acts as an economic growth shock, improve infant survival by increasing the local income. Furthermore, there is no supportive evidence that the SEZs significantly alter either women's fertility-associated behaviors or environmental pollution. These results highlight the previously ignored human capital-related consequences of place-based policies in China.

2.
Bioresour Technol ; 393: 130159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070580

RESUMO

The response of anammox bacteria to hydroxylamine has not been well explained. Herein, hydroxylamine was long-term added as the sole substrate to marine anammox bacteria (MAB) in saline wastewater treatment for the first time. MAB could tolerate 5 mg/L hydroxylamine. However, MAB activity was inhibited by the high dose of hydroxylamine (40 mg/L), and hydroxylamine removal efficiency was only 3 %. Remarkably, when hydroxylamine reached 20 mg/L, ammonium was produced the most at 2.88 mg/L, mainly by the hydroxylamine and hydrazine disproportionations. Besides, the relative abundance of Candidatus Scalindua decreased from 4.6 % to 0.6 % as the hydroxylamine increased from 0 to 40 mg/L. MAB secreted more extracellular polymeric substances to resist hydroxylamine stress. However, long-term hydroxylamine loading led to the disintegration of MAB granules. This work shed light on the response of MAB to hydroxylamine in saline wastewater treatment.


Assuntos
Compostos de Amônio , Microbiota , Hidroxilamina , Águas Residuárias , Nitrogênio/análise , Desnitrificação , Oxidação Anaeróbia da Amônia , Bactérias , Hidroxilaminas
3.
Bioresour Technol ; 393: 130170, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072078

RESUMO

Hypersaline wastewater posed a challenge to microbial nitrogen removal processes. Herein, halophilic marine anammox bacteria (MAB) were applied to treat nitrogen-rich wastewater with 35-90 g/L salts for the first time. It was found that MAB, with low relative abundance (2.3-6.9 %), still exhibited good nitrogen removal efficiency (>90 %) under 35-70 g/L salts. The specific anammox activity peaked at 180.16 mg N/(g·VSS·d) at 65 g/L salts. MAB secreted more extracellular polymeric substances to resist the adverse effects of hypersaline stress. Nevertheless, the nitrogen removal deteriorated at 75 g/L salts, and further collapsed as the salinity increased. At 90 g/L salts, total nitrogen removal rate decreased by 74 % compared with that of 35 g/L salts. Besides, SBR1031 increased from 12.0 % (35 g/L salts) to 17.4 % (90 g/L salts) and became the dominant bacterial genus in the reactor. This work shed light on the treatment of hypersaline wastewater through MAB.


Assuntos
Nitrogênio , Águas Residuárias , Salinidade , Oxidação Anaeróbia da Amônia , Sais , Desnitrificação , Reatores Biológicos , Bactérias , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...